

Future Aircraft Engine Control Challenges

Bill Rhoden Engine & Control Systems

ASME International Gas Turbine Institute Turbo Expo 2013 Controls, Diagnostics and Instrumentation Panel

COPYRIGHT 2013 UTCAEROSPACE SYSTEMS. THE INFORMATION CONTAINED HEREIN, WHILE PRESENTED IN GOOD FAITH, IS PROVIDED FOR INFORMATIVE PURPOSES ONLY AND MAY BE CHANGED BY UTC AEROSPACE SYSTEMS WITHOUT PRIOR NOTICE AND SHOULD NOT BE CONSTRUED AS CREATING CONTRACTUAL OBLIGATION ON THE PART OF UTC AEROSPACE SYSTEMS. NEITHER RECEIPT NOR POSSESSION OF THIS INFORMATION CONFERS OR TRANSFERS ANY RIGHT TO REPRODUCE OR DISCLOSE ITS CONTENTS IN WHOLE OR IN PART, EXCEPT WITH THE EXPRESS WRITTEN PERMISSION OF UTC AEROSPACE SYSTEMS.

Subject to the EAR, ECCN EAR99

This information is subject to the export control laws of the United States, specifically including the Export Administration Regulations (EAR), 15 C.F.R. Part 730 et. seq. Transfer, retransfer, or disclosure of this data by any means to a non-U.S. person (individual or company), whether in the United States or abroad, without any required export license or other approval from the U.S Government is prohibited, including without limitation any diversion to a military end user or use in a military end use application.

AGENDA

UTPAS Perspective on Engine Control Challenges

What is UTPAS?

Future challenges:

- Complexity
- Packaging
- Operating environment

UNITED TECHNOLOGIES REORGANIZATION

Formation of UTC Propulsion & Aerospace Systems

July 2012 – United Technologies formed UTC Aerospace Systems

TWO UTAS DIVISIONS

Aircraft Systems / Power Control & Sensing Systems

Actuation **Systems**

Primary & secondary flight controls Helicopter rotor actuation Nacelle actuation Utility actuation

Interiors

Cargo handling systems **Evacuation systems** Propulsion systems Specialty seating Lighting systems

Wheels & Brakes

Wheels Brakes Brake control systems High temp composites

Aerostructures

Nacelle systems Flight control surfaces APU tailcones Acoustic materials, coatings & structures

Landing Gear

Landing gear - large commercial. military, regional & business iets

Air Management **Systems**

Environmental control systems Bleed air systems Cabin pressure systems Ventilation systems On board inert gas generating

Propeller Systems

Propeller systems with composite blades & electronic controls for regional aircraft and large

military

ISR Systems

Reconnaissance systems Airborne laser warning Ground systems

Electric Systems

Generation Primary distribution Secondary distribution Emergency power, Motors & Drives

Fire Protection Systems

Aircraft cargo, engine and APU fire detection/suppression Cabin and lavatory fire protection systems

Armored combat vehicle fire sensing and suppression systems

Engine Components

Aero gas turbine components Airfoils & rotating components Drive shafts & couplings

Engine & Control Systems

Electronic engine controls Engine control systems Engine & nozzle actuation Gearboxes Fuel metering units

Sensors & Integrated Systems

Control & actuation systems Temperature sensors Vehicle health mgmt systems Fire protection systems

Fuel measurement Ice detection Rate gyros & inertial sensors

Space Systems

control systems

NASA's space suit/life support systems Environmental monitoring & control. mechanical systems, thermal

ENGINE CONTROL SYSTEM CHALLENGES

Rapidly Changing Engine Design Space

- More complex systems to control
 - Increasing integration with airframe → UTPAS
 - New variable geometry in engine
- Increasing control system sophistication
 - Model-based controls
 - On-board engine health management
- Packaging
 - Smaller engine cores w/ larger or no fans
 - Decreasing real estate available for components
- Harsher environments
 - Increasing temperatures / thermal cycling
 - Vibration

APPROACH TO MANAGING COMPLEXITY

More-Electric Engine Architectures

Failure modes

Loss of power, single-point/multi-point failures, software

Unintended interactions

Engine / generator

Power generation

Weight, reliability

Power distribution

Weight, reliability

EMI/HIRF/Lightning susceptibility Software validation (DO-178C)

APPROACH TO MANAGING COMPLEXITY

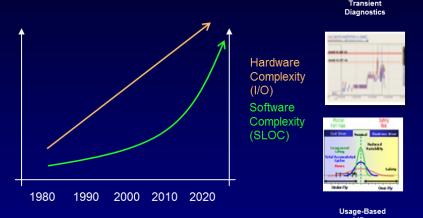
Increased Controls Integration

Failure modes

Loss of power, single-point/multi-point failures, software

Unintended interactions

Latency, data integrity, aircraft control


Increased connections

Reliability

Communications protocol(s)

Multiple protocols in play

EMI/HIRF/Lightning susceptibility Software validation (DO-178C).

APPROACH TO PACKAGING CONCERNS

Distributed Architectures

Failure modes

Loss of power, single-point/multi-point failures, software

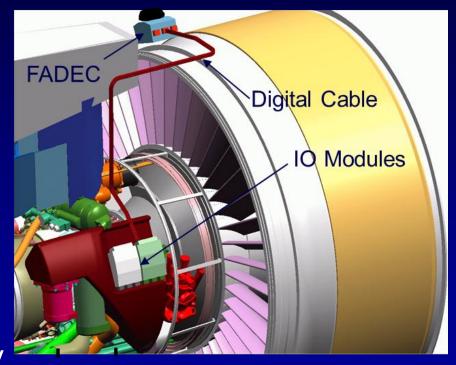
Unintended interactions

Latency, data integrity

Increased connections

Reliability

Potential harsher environment


Smart nodes in hot section

Communications protocol(s)

Multiple protocols in play

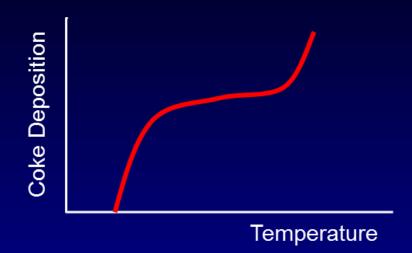
EMI/HIRF/Lightning susceptibility

Software validation (DO-178C)

HARSH ENGINE ENVIRONMENTS

Continually Increasing Temperatures The Norm

Ambient temperatures increasing

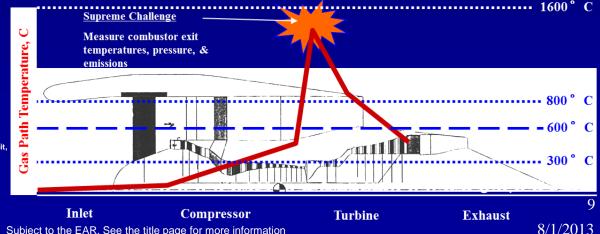

Based On Location

Cooling capabilities decreasing

Hotter fuel, hotter air

Less real estate for mounting

Core mounting vs. fan mounting



Robust electronics limited

DECWG research ongoing

Courtesy: NASA

45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Transition in Gas Turbine Engine Control System Architecture: Modular, Distributed, Embedded

Subject to the EAR. See the title page for more information

APPROACH TO HARSHER ENVIRONMENTS

High(er) Temperature Electronics

Limited performance

Lack of high-end processing/memory

Limited life

Lifing investigation ongoing

Limited supply base

Niche market

Limited affordability

Significantly higher costs

Limited support

Circuit boards, solders, masks...

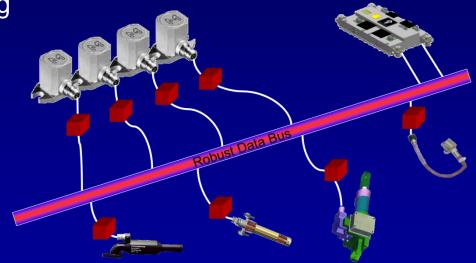
DECWG research

POTENTIAL FUTURE DIRECTIONS

Distributed control architecture

Off-engine component – Environmentally benign

On-engine component – Local loop closure, smart sensing


Multi-spectral / Multi-functional sensing

Controls integration w/ PHM

Engine / Airframe integrated networks

Engine / Flight control integration

Environmental control for electronics or high(er) temperature electronics

THE FUTURE IS NOW

Control Systems Lead The Way

